F5 Networks Japan Technical Information Documentation

F5, Inc.

2023年09月26日

F5 2023 Read The Docs Guide

目次:

第1章	F5 rSeries の初期設定	5
1.1	Management IP 設定	5
1.2	F5OS 初期パスワード変更	5
1.3	API アクセストークンの取得....................................	6
1.4	rSeries アプライアンス初期設定....................................	7
1.5	rSeries ネットワーク設定	13
第2章	BIG-IP テナントの管理	21
2.1	BIG-IP テナントのデプロイ	21
2.2	BIG-IP テナントの状態変更	24
2.3	BIG-IP テナントの削除....................................	25
第3章	F5OS のアップグレード	27
3.1	F5OS のバージョン確認	27
3.2	F5OS のバージョン変更	29
第4章	設定の保存とリストア	31
4.1	設定の保存 (バックアップ)	31
4.2	F5OS の初期化	32
4.3	設定のリストア	33
第5章	トラブル発生時の操作	35
5.1	QKView の取得	35
第6章	おわりに	37

F5 rSeries の初期設定

本章では、基本的な F5 rSeries (F5OS-A) の設定内容についてご紹介致します。

1.1 Management IP 設定

リモート端末から API でアクセスできるようにするために、CLI で Management IP アドレスを設定します。詳細な手順につきましては、以下のドキュメントをご参照ください。

https://f5j-easy-setup-f5os.readthedocs.io/ja/latest/module1/class01/class1.html

1.2 F5OS 初期パスワード変更

F5OS の admin ユーザーの初期パスワードは"admin"になっています。API 経由でアクセスするには、初期パス ワードを変更する必要があります。以下のような curl コマンドを実行して、admin ユーザーの初期パスワードを 変更します。(<>内の部分は、ご利用の環境に合わせて修正してください。)

1.3 API アクセストークンの取得

・最初に、変数"F5OS_PASSWORD"および"APPLIANCE_IP"を設定します。環境変数として設定する場合には、以下のようなコマンドを実行してください。(<>内の部分は、ご利用の環境に合わせて修正してください。)

\$ export F50S_PASSWORD=<F50Sのadminユーザーパスワード> \$ export APPLIANCE_IP=<rSeriesのManagement IPアドレス>

・以下のようなコマンドを実行し、Basic 認証で API アクセストークンを取得します。レスポンス・ヘッダ内 に含まれる"X-Auth-Token"の値を取得し、以降の API リクエストに利用します。

\$ curl -sk -u admin:\$F50S_PASSWORD -I https://\$APPLIANCE_IP/api/data/openconfig-→system:system/aaa

注釈: F5OS では、ポート 8888 およびポート 443 で API コールを受け付けることができます (いずれも https)。 ポート 443 を利用する場合、URI の最初の部分は"/api"となります。ポート 8888 を利用する場合、URI の最初の 部分は"/restconf"となります。本資料では、ポート 443 で"/api"を用いる場合について、ご紹介していきます。

・上記のコマンドの出力例は、以下の通りです。

```
HTTP/1.1 200 OK
Date: Thu, 17 Aug 2023 15:37:35 GMT
Server: Apache
Strict-Transport-Security: max-age=63072000; includeSubdomains;
Cache-Control: private, no-cache, must-revalidate, proxy-revalidate
Content-Type: application/yang-data+xml
Pragma: no-cache
X-Auth-Token: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.
→eyJTZXNzaW9uIElEIjoiYWRtaW4xNjkyMjg2NjU1IiwiYXV0aGluZm8iOiJhZG1pbiAxMDAwIDkwMDAqXC90bXAiLCJidWZmZX
→WfIWKmKf3ykk3Uorlmurx_YmeialOZbnxzoZDawixy8
Content-Security-Policy: default-src 'self'; block-all-mixed-content; base-uri 'self';

→ frame-ancestors 'none';

Strict-Transport-Security: max-age=15552000; includeSubDomains
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 1; mode=block
Content-Security-Policy: default-src 'self'; upgrade-insecure-requests; frame-

where the set of the set of

worker-src 'self'; media-src 'self'; worker-src 'none';
```

・以下のコマンドを実行することで、レスポンス・ヘッダ内の X-Auth-Token の値を変数"F5OS_TOKEN"に 代入できます。

```
$ F50S_TOKEN=`curl -sk -u admin:$F50S_PASSWORD -o /dev/null -I https://$APPLIANCE_IP/
→api/data/openconfig-system:system/aaa -w '%header{X-Auth-Token}\n'`
```

・以下のコマンドを実行して、変数"F5OS_TOKEN"に値が格納されていることを確認します。

\$ echo \$F50S_TOKEN

1.4 rSeries アプライアンス初期設定

1.4.1 ライセンス確認

・以下のコマンドを実行して、rSeries アプライアンスに適用されているライセンス情報を確認します。この コマンドを実行すると、Registration Key を含むライセンス情報を確認できます。

1.4.2 ホスト名の設定

 ・以下のような curl コマンドを実行して、rSeries アプライアンスのホスト名を設定します。ホスト名の設定 には、PATCH メソッドを使用します。この例では、ホスト名を"Appliance01"として設定します。

・以下のコマンドを実行して、ホスト名が適切に設定されているかを確認します。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

"openconfig-system:config": {

```
"hostname": "Appliance01"
}
```

1.4.3 DNS サーバー設定

・以下のような curl コマンドを実行して、rSeries アプライアンスが参照する DNS サーバーを設定します。DNS サーバーの設定には、PATCH メソッドを使用します。この例では、参照する DNS サーバーを"8.8.8.8"として設定します。

```
$ curl -sk -X PATCH -H "X-Auth-Token: $F50S_TOKEN" -H "Content-Type: application/yang-
→data+json" https://$APPLIANCE_IP/api/data/openconfig-system:system/dns -d @- <<EOS
{
    "openconfig-system:dns": {
        "servers": {
            "server": [
                {
                    "address": "8.8.8.8",
                    "config": {
                        "address": "8.8.8.8",
                        "port": 53
                     }
                }
            ]
        }
    }
}
EOS
```

・以下のコマンドを実行して、DNS サーバーが適切に設定されているかを確認します。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
{
    "openconfig-system:dns": {
        "servers": {
            "server": [
            {
                "address": "8.8.8.8",
                "config": {
                  "address": "8.8.8.8",
                 "port": 53
```

```
},
    "state": {
        "port": 53
     }
     }
     }
}
```

1.4.4 時刻設定 (Time Zone および NTP サーバー)

 ・以下のような curl コマンドを実行して、rSeries アプライアンスのタイムゾーン、および参照する NTP サー バーを設定します。時刻設定には、PATCH メソッドを使用します。この例では Time Zone を"Asia/Tokyo"、 NTP サーバーを"ntp.nict.jp"として設定します。

```
$ curl -sk -X PATCH -H "X-Auth-Token: $F50S_TOKEN" -H "Content-Type: application/yang-
⇔data+json" https://$APPLIANCE_IP/api/data -d @- <<EOS
{
     "openconfig-system:system": {
        "clock": {
             "config": {
                "timezone-name": "Asia/Tokyo"
             }
         },
         "ntp": {
             "config": {
                 "enabled": "true"
             },
             "servers": {
                 "server": [
                     {
                         "address": "ntp.nict.jp",
                         "config": {
                             "address": "ntp.nict.jp"
                         }
                     }
                 ]
            }
        }
     }
}
EOS
```

・以下のコマンドを実行して、NTP サーバーが適切に設定されているかを確認します。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"openconfig-system:ntp": {
 "config": {
    "enabled": true,
   "enable-ntp-auth": false
 },
 "state": {
   "enabled": true,
   "enable-ntp-auth": false
 },
 "servers": {
    "server": [
     {
        "address": "ntp.nict.jp",
        "config": {
         "address": "ntp.nict.jp",
          "port": 123,
          "version": 4,
          "association-type": "SERVER",
          "iburst": false,
          "prefer": false
       },
        "state": {
          "address": "ntp.nict.jp",
          "port": 123,
          "version": 4,
          "association-type": "SERVER",
          "iburst": false,
          "prefer": false,
          "f5-openconfig-system-ntp:authenticated": false
        }
      }
    ]
 }
}
```

1.4.5 リモートログサーバー設定

・以下のような curl コマンドを実行して、F5OS のログを転送するリモートログサーバー (Syslog サーバー)
 を設定します。ログサーバーの設定には、PATCH メソッドを使用します。この例では、ログサーバー

を"10.10.10.10"として設定します。

・以下のコマンドを実行して、ログサーバーが適切に設定されているかを確認します。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"host": "10.10.10.10",
        "remote-port": 514,
        "f5-openconfig-system-logging:proto": "udp"
      },
      "selectors": {
        "selector": [
          {
            "facility": "f5-system-logging-types:LOCAL0",
            "severity": "INFORMATIONAL",
            "config": {
             "facility": "f5-system-logging-types:LOCAL0",
              "severity": "INFORMATIONAL"
            }
          }
       1
      }
    }
 ]
}
```

1.4.6 許可リスト (Allow List) 設定

 ・以下のような curl コマンドを実行して、F5OS の Out-of-band 管理を許可する IP アドレス、およびポート 番号を設定します。Allow List の設定には、POST メソッドを使用します。この例では、"10.255.0.0/24" からの SNMP (ポート 161) 通信を許可する Allow List を設定します。

```
$ curl -sk -X POST -H "X-Auth-Token: $F50S_TOKEN" -H "Content-Type:application/yang-
⇔ips:allowed-ips -d @- <<EOS
{
   "allowed-ip": [
      {
         "name": "allow-snmp",
         "config": {
            "ipv4": {
               "address": "10.255.0.0",
               "prefix-length": 24,
               "port": 161
            }
         }
      }
  1
}
EOS
```

・以下のコマンドを実行して、Allow List が適切に設定されているかを確認します。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

1.5 rSeries ネットワーク設定

1.5.1 VLAN 設定

・以下のような curl コマンドを実行して、rSeries アプライアンス上で VLAN を設定します。VLAN の設定には、PATCH メソッドを使用します。この例では、VLAN ID "103" (VLAN 名 "vlan103") と VLAN ID "104" (VLAN 名 "vlan104") の 2 つの VLAN を作成します。

・以下のコマンドを実行して、VLAN が適切に設定されているかを確認します。

\$ curl -sk -H "X-Auth-Token:\$F50S_TOKEN" -H "Content-Type:application/yang-data+json"_ →https://\$APPLIANCE_IP/api/data/openconfig-vlan:vlans

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"openconfig-vlan:vlans": {
  "vlan": [
   {
      "vlan-id": 103,
     "config": {
       "vlan-id": 103,
        "name": "vlan103"
     }
    },
      "vlan-id": 104,
      "config": {
        "vlan-id": 104,
       "name": "vlan104"
      }
    }
 ]
}
```

1.5.2 Interface 設定

・以下のような curl コマンドを実行して、rSeries アプライアンスの物理インタフェースに VLAN を割り当てます。インタフェースの設定には、PATCH メソッドを使用します。この例では、上記で作成した VLAN 103 と 104 を、Trunk VLAN (Tagged) としてインタフェース 3.0 に割り当てます。

```
$ curl -sk -X PATCH -H "X-Auth-Token: $F50S_TOKEN" -H "Content-Type: application/yang-
→data+json" https://$APPLIANCE_IP/api/data/openconfig-interfaces:interfaces -d @- <
⇔<EOS
{
   "openconfig-interfaces:interfaces": {
        "interface": [
            {
                "name": "3.0",
                "openconfig-if-ethernet:ethernet": {
                    "openconfig-vlan:switched-vlan": {
                        "config": {
                            "trunk-vlans": [
                                103,
                                104
                            1
                        }
                   }
               }
           }
       1
   }
}
EOS
```

・以下のコマンドを実行して、インタフェース 3.0 の設定を確認します。

・上記で設定した trunk-vlans (103 および 104) が含まれていることを確認します。

1.5.3 Link Aggregation (LAG) 設定

 ・以下のような curl コマンドを実行して、LAG インタフェースを作成し、物理インタフェースを割り当てます。インタフェースの設定には、PATCH メソッドを使用します。この例では、"LAG-Data-1"という LAG インタフェースを作成し、インタフェース 3.0 および 4.0 を割り当てます。

```
"name": "LAG-Data-1",
                     "type": "iana-if-type:ieee8023adLag",
                    "enabled": true
                },
                "openconfig-if-aggregate:aggregation": {
                   "config": {
                        "lag-type": "LACP",
                        "f5-if-aggregate:distribution-hash": "src-dst-ipport"
                    },
                    "openconfig-vlan:switched-vlan": {
                        "config": {
                            "trunk-vlans": [
                                103,
                                 104
                            1
                        }
                    }
                }
            },
            {
                "name": "3.0",
                "config": {
                    "name": "3.0"
                },
                "openconfig-if-ethernet:ethernet": {
                    "config": {
                        "openconfig-if-aggregate:aggregate-id": "LAG-Data-1"
                    }
                }
            },
            {
                "name": "4.0",
                "config": {
                    "name": "4.0"
                },
                "openconfig-if-ethernet:ethernet": {
                    "config": {
                        "openconfig-if-aggregate:aggregate-id": "LAG-Data-1"
                    }
                }
            }
        ]
    }
}
EOS
```

• 以下のような curl コマンドを実行して、上記で作成した LAG インタフェースに LACP (Link Aggregation Control Protocol) の設定を行います。LACP の設定には、PATCH メソッドを使用します。この例では、

LACP Interval を"FAST"、Mode を"Active"として設定します。

・以下のコマンドを実行して、LAG および LACP が適切に設定されているかを確認します。

・上記のコマンドの出力例は、以下の通りです。

```
"openconfig-lacp:lacp": {
 "config": {
   "system-priority": 32768
 },
 "state": {
   "f5-lacp:system-id-mac": "14:a9:d0:1a:82:13"
 },
 "interfaces": {
    "interface": [
     {
        "name": "LAG-Data-1",
        "config": {
         "name": "LAG-Data-1",
         "interval": "FAST",
         "lacp-mode": "ACTIVE"
        },
```

```
"state": {
  "name": "LAG-Data-1",
  "interval": "FAST",
  "lacp-mode": "ACTIVE",
  "system-id-mac": "14:a9:d0:1a:82:13"
},
"members": {
  "member": [
   {
      "interface": "3.0",
      "state": {
        "interface": "3.0",
        "activity": "ACTIVE",
        "timeout": "SHORT",
        "synchronization": "OUT_SYNC",
        "aggregatable": true,
        "collecting": false,
        "distributing": false,
        "system-id": "14:a9:d0:1a:82:13",
        "oper-key": 3,
        "partner-id": "00:00:00:00:00:00",
        "partner-key": 0,
        "port-num": 3072,
        "partner-port-num": 0,
        "counters": {
          "lacp-in-pkts": "0",
          "lacp-out-pkts": "370",
          "lacp-rx-errors": "0"
        }
      }
    },
    {
      "interface": "4.0",
      "state": {
        "interface": "4.0",
        "activity": "ACTIVE",
        "timeout": "SHORT",
        "synchronization": "OUT_SYNC",
        "aggregatable": true,
        "collecting": false,
        "distributing": false,
        "system-id": "14:a9:d0:1a:82:13",
        "oper-key": 3,
        "partner-id": "00:00:00:00:00:00",
        "partner-key": 0,
        "port-num": 4096,
        "partner-port-num": 0,
        "counters": {
```

2 BIG-IP テナントの管理

本章では、F5 rSeries 上で動作する BIG-IP テナントを API で管理する方法について、ご紹介致します。

2.1 BIG-IP テナントのデプロイ

・以下のような curl コマンドを実行して、rSeries アプライアンス上に BIG-IP (TMOS) テナントを作成します。テナントの作成には、POST メソッドを使用します。この例で作成するテナントの構成は、以下の通りです。

設定項目	値
テナント名	test-tenant01
テナント種別	BIG-IP
利用するテナントイメージ	BIGIP-17.1.0.2-0.0.2.ALL-F5OS.qcow2.zip.bundle
BIG-IP テナントの管理 IP アドレス	172.28.15.216
デフォルトゲートウェイ	172.28.15.254
サブネット長 (Prefix-length)	23
テナントに割り当てる VLAN	103 および 104
テナントに割り当てる仮想 CPU 数	4
テナントに割り当てるメモリ (MB)	14848
テナントに割り当てるディスク容量 (GB)	82
テナントの状態	Deployed
アプライアンス・モード	無効

"tenant": [

{

```
(前のページからの続き)
```

```
{
            "name": "test-tenant01",
            "config": {
                "type": "BIG-IP",
                "image": "BIGIP-17.1.0.2-0.0.2.ALL-F50S.qcow2.zip.bundle",
                "nodes": [
                   1
                ],
                "mgmt-ip": "172.28.14.216",
                "gateway": "172.28.15.254",
                "prefix-length": 23,
                "vlans": [
                    "103",
                    "104"
                ],
                "vcpu-cores-per-node": 4,
                "memory": 14848,
                "storage": {
                    "size": 82
                },
                "cryptos": "enabled",
                "running-state": "deployed",
                "appliance-mode": {
                    "enabled": false
                }
            }
       }
   ]
EOS
```

・以下のコマンドを実行して、F5OS で稼働するテナントを確認します。

```
$ curl -sk -H "X-Auth-Token: $F50S_TOKEN" -H "Content-Type:application/yang-data+json"_
→https://$APPLIANCE_IP/api/data/f5-tenants:tenants
```

・上記のコマンドの出力例は、以下の通りです。

```
"f5-tenants:tenants": {
 "tenant": [
   {
     "name": "test-tenant01",
     "config": {
       "name": "test-tenant01",
       "type": "BIG-IP",
        "image": "BIGIP-17.1.0.2-0.0.2.ALL-F50S.qcow2.zip.bundle",
```

(次のページに続く)

}

```
"nodes": [1],
         "mgmt-ip": "172.28.15.216",
         "prefix-length": 23,
         "dag-ipv6-prefix-length": 128,
         "gateway": "172.28.15.254",
         "vlans": [103, 104],
         "cryptos": "enabled",
         "vcpu-cores-per-node": 4,
         "memory": "14848",
         "storage": {
           "size": 82
         },
         "running-state": "deployed",
         "mac-data": {
           "f5-tenant-l2-inline:mac-block-size": "one"
         },
         "appliance-mode": {
           "enabled": false
         }
       },
       "state": {
         "name": "test-tenant01",
         "unit-key-hash":
→ "CvXv44ROa3LiMjsI4k0mmxiaOZa4rk5iN97edJD21WYOu0tLgxcBpLC7z9Ubpw4jgaG+D0Xp+hoe6Ffv9HNnXQ==
∽",
         "type": "BIG-IP",
         "image": "BIGIP-17.1.0.2-0.0.2.ALL-F50S.gcow2.zip.bundle",
         "mgmt-ip": "172.28.15.216",
         "prefix-length": 23,
         "dag-ipv6-prefix-length": 128,
         "gateway": "172.28.15.254",
         "vlans": [103, 104],
         "cryptos": "enabled",
         "vcpu-cores-per-node": 4,
         "memory": "14848",
         "storage": {
           "size": 82
         },
         "running-state": "deployed",
         "mac-data": {
           "base-mac": "14:a9:d0:1a:82:14",
           "mac-pool-size": 1,
            "f5-tenant-l2-inline:mac-block": [
              {
                "mac": "14:a9:d0:1a:82:14"
              }
            1
         },
```

```
"appliance-mode": {
        "enabled": false
      },
      "cpu-allocations": {
        "cpu-allocation": [
         {
            "node": 1
          }
        ]
      },
      "feature-flags": {
        "stats-stream-capable": true
      },
      "status": "Running",
      "primary-slot": 1,
      "image-version": "BIG-IP 17.1.0.2 0.0.2",
      "instances": {
        "instance": [
          {
            "node": 1,
            "pod-name": "test-tenant01-1",
            "instance-id": 1,
            "phase": "Running",
            "creation-time": "2023-08-21T07:09:32Z",
            "ready-time": "2023-08-21T07:10:00Z",
            "status": "Started tenant instance",
            "mgmt-mac": "14:a9:d0:1a:82:15"
          }
        1
      }
    }
]
```

2.2 BIG-IP テナントの状態変更

F5OS 上のテナントには以下の3種類の状態があり、F5OS から変更することができます。

状態	説明
Configured	テナント設定のみシステム上に存在
Provisioned	ソフトウェアをインストールし、仮想ディスクを作成
Deployed	リソース (CPU/メモリ) を割り当て、テナントを起動

・以下の curl コマンドを実行して、作成したテナント"test-tenant01"の状態を"Configured"に変更します。
 テナントの状態設定には、PATCH メソッドを使用します。

・以下の curl コマンドを実行して、テナント"test-tenant01"の状態が"Configured"に変更されているかを確認します。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"f5-tenants:running-state": "configured"
```

å

2.3 BIG-IP テナントの削除

 ・以下の curl コマンドを実行して、作成したテナント"test-tenant01"を削除します。テナントの削除には、 DELETE メソッドを使用します。

・以下の curl コマンドを実行して、BIG-IP テナントを確認します。上記で削除したテナントが、存在していないことを確認します。

F50S のアップグレード

本章では、APIを使って F5OS をアップグレードする方法について、ご紹介致します。

3.1 F5OS のバージョン確認

 rSeries 筐体に F5OS のイメージをアップロード後、以下の curl コマンドを実行して、イメージの状態を 確認します。

・上記のコマンドの出力例は、以下の通りです。

```
"f5-system-image:state": {
 "os": {
    "os": [
     {
        "version-os": "1.3.2-13054",
       "status": "ready",
       "date": "2023-01-26",
       "size": "922.16MB",
        "in-use": false,
        "type": ""
     },
      {
       "version-os": "1.5.1-12283",
       "status": "ready",
       "date": "2023-08-14",
        "size": "926.15MB",
        "in-use": true,
```

"type": ""

```
(前のページからの続き)
```

```
}
 ]
},
"services": {
 "service": [
   {
     "version-service": "1.3.2-13054",
     "status": "ready",
     "date": "2023-01-26",
     "size": "0.38GB",
      "in-use": false,
     "type": ""
   },
    {
      "version-service": "1.3.0-8327",
     "status": "ready",
     "date": "2023-01-26",
     "size": "2.15GB",
      "in-use": false,
      "type": ""
    },
    {
     "version-service": "1.5.1-12283",
     "status": "ready",
     "date": "2023-08-14",
     "size": "2.05GB",
     "in-use": true,
      "type": ""
    },
    {
      "version-service": "1.5.0-5781",
     "status": "ready",
      "date": "2023-08-14",
     "size": "2.49GB",
     "in-use": false,
     "type": ""
    }
 ]
},
"iso": {
  "iso": [
   {
      "version-iso": "1.3.2-13054",
      "status": "ready",
     "date": "2023-01-26",
      "size": "4.04GB",
     "in-use": false,
```

```
"type": ""
      },
      {
        "version-iso": "1.5.1-12283",
        "status": "ready",
       "date": "2023-08-14",
        "size": "6.05GB",
        "in-use": false,
        "type": ""
      }
    1
 },
 "install": {
   "install-os-version": "1.5.1-12283",
   "install-service-version": "1.5.1-12283",
    "install-status": "none"
 }
}
```

3.2 F5OS のバージョン変更

 ・以下のような curl コマンドを実行して、筐体の F5OS バージョンを任意のものに変更します。F5OS の アップグレード/ダウングレードには、POST メソッドを使用します。この例では、F5OS 1.3.2 Buld 13054 (1.3.2-13054) をインストールします。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"f5-system-image:output": {
    "response": "System ISO version has been set"
}
```

• F5OS 再起動後、F5OS のバージョン確認 の手順に従って F5OS イメージを確認し、"Install"以下の部分

が指定した F5OS バージョンになっていることを確認します。

設定の保存とリストア

本章では、APIを使って F5OS の設定を保存 (バックアップ)、およびリストアする方法について、ご紹介致します。

4.1 設定の保存 (バックアップ)

4.1.1 プライマリキーの設定

F5 rSeries では、設定データベースに含まれる機密性の高いパスワードやパスフレーズを暗号化/復号化するため に、プライマリキーを使用します。セキュリティを高めるために、プライマリキーは定期的にリセットすることを 推奨します。RMA 時等、異なるデバイスに設定をリストアする場合、リストア対象のデバイスに同一のキーを設 定する必要があります。

・以下の curl コマンドを実行して、rSeries にプライマリキーを設定します。プライマリキーを新規に設定する際には、POST メソッドを使用します。この例ではパスフレーズを"myprimarykey"、salt を"mysalt"として設定します。

4.1.2 バックアップファイルの作成

 ・以下の curl コマンドを実行して、F5OS の設定を保存 (バックアップ) します。設定のバックアップには、 POST メソッドを使用します。この例では、バックアップファイル名を"F5OS-BACKUP01"として設定し ます。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"f5-database:output": {

"result": "Database backup successful. configs/F50S-BACKUP01 is saved."

}

}
```

• 保存されたバックアップファイルは、ローカル端末等にダウンロードしておきます。

4.2 F5OS の初期化

・以下の curl コマンドを実行して、F5OS を初期化します。F5OS の初期化には、POST メソッドを使用します。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"f5-database:output": {
    "result": "Database reset-to-default successful."
    }
}
```

・初期化完了後、F5OS 初期パスワード変更の手順に従って、admin ユーザーの初期パスワードを変更します。

4.3 設定のリストア

 ・以下の curl コマンドを実行して、バックアップファイルから F5OS の設定をリストアします。設定のリ ストアには、POST メソッドを使用します。この例では、"F5OS-BACKUP01"という名前のバックアップ ファイルから、リストアを行います。

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"f5-database:output": {
    "result": "Database config-restore successful."
  }
}
```

5 トラブル発生時の操作

本章では、APIを使った F5OS の障害発生時の操作方法について、ご紹介致します。

5.1 QKView の取得

・以下の curl コマンドを実行して、F5OS の QKView ファイルを取得します。QKView の取得には、POST メソッドを使用します。この例では、QKView ファイル名を"mytest-qkview.tgz"として設定します。

"f5-system-diagnostics-qkview:filename": "mytest-qkview.tgz"

EOS

・上記コマンドの実行結果 (レスポンス) は、以下の通りです。

```
"f5-system-diagnostics-qkview:output": {
    "result": " Warning: Qkview may contain sensitive data such as secrets, passwords_
    and core files. Handle with care. Please send this file to F5 support. \nQkview file_
    mytest-qkview.tgz is being collected.\nreturn code 200\n ",
    "resultint": 0
  }
}
```

・以下の curl コマンドを実行して、rSeries アプライアンス上に保存された QKView ファイルの一覧を取得します。

・上記のコマンドの出力例は、以下の通りです。

```
' "f5-system-diagnostics-qkview:file": [
    {
        "filename": "mytest-qkview.tgz",
        "size": 622282180,
        "created-on": "2023-08-21T17:55:40.185751329+09:00"
    }
]
```


APIによる F5OS 初期セットアップに関しては、以上で終了となります。

< F5 ネットワークス WEB サイトの紹介>

F5 ネットワークスジャパン総合サイト https://f5.com/jp

F5のセキュリティ ソリューション https://f5.com/jp/products/security

MtyF5:ナレッジベース総合サイト (英語)

https://my.f5.com/

DevCentral: F5 ユーザコミュニティサイト (英語:アカウント登録が必要です) https://community.f5.com/

F5 公式販売代理店リスト https://www.f5.com/ja_jp/partners/jp-find-a-partner

以上

本資料は設計・構築を補助するための情報提供を目的としています。内容についてできる限り正確を期すよう努め てはおりますが、いかなる明示または暗黙の保証も責任も負いかねます。本資料の情報は、使用先の責任において 使用されるべきものであることをあらかじめご了承ください。 この文書に記載された製品の仕様、ならびに動作 に関しては各社ともにこれらを予告なく改変する場合がありま す。F5 製品の各機能やコマンドに関する正式な情 報に関しては AskF5 (https://support.f5.com/)の対応するハードウェアプラットフォーム、ソフトウェアバー ジョンに即してご確認下さい。

本資料の著作権は、F5 ネットワークスジャパン合同会社にあります。本文中にある製品名は、各社の商標または 登録商標です。